organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Harry Adams,^a* Samuel M. Hawxwell,^a Mustafa Saçmaci,^b Şevket Hakan Üngoren,^b Yunus Akçamur^b and Recep Sahingoz^b

^aDepartment of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, England, and ^bDepartment of Chemistry, Yozgat Faculty of Arts and Sciences, Erciyes University, 66200 Yozgat, Turkey

Correspondence e-mail: h.adams@sheffield.ac.uk

Key indicators

Single-crystal X-ray study T = 150 K Mean σ (C–C) = 0.005 Å R factor = 0.055 wR factor = 0.154 Data-to-parameter ratio = 11.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

5-(4-Methoxybenzoyl)-6-(4-methoxyphenyl)-3phenyl-3,4-dihydro-2*H*-1,3-oxazine-2,4-dione

In the title compound, $C_{25}H_{19}NO_6$, the molecular structure is stabilized by intra- and intermolecular $C-H \cdots O$ hydrogen bonds. The intermolecular hydrogen bonds link the molecules into a herringbone-like dimer.

Received 12 October 2005 Accepted 25 October 2005 Online 31 October 2005

Comment

Oxazine derivatives have been shown to be antimicrobial agents (Bayomi *et al.*, 1985), fungicides (Player *et al.*, 1993), and also to exhibit some cytotoxic or antitumour activity (Eger & Frey, 1992; Mordarski *et al.*, 1970; Mordarski & Chylinska, 1971, 1972). In the light of this, we have synthesized and characterized the title compound, (2), and have determined its structure by X-ray analysis.

The molecular structure of (2) is illustrated in Fig. 1. The rings (*A*, *B*, *C* and *D*) are each essentially planar, with r.m.s. deviations of 0.031 (2), 0.019 (2), 0.017 (2) and 0.006 (2) Å, respectively. The dihedral angles between the rings are $A/B = 64.31 (9)^{\circ}$, $A/C = 19.49 (16)^{\circ}$, $A/D = 82.31 (8)^{\circ}$, $B/C = 62.22 (9)^{\circ}$, $B/D = 61.61 (9)^{\circ}$ and $C/D = 63.73 (8)^{\circ}$. The bond lengths and angles are in agreement with reported literature values (Allen *et al.*, 1987).

 $\ensuremath{\mathbb{C}}$ 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The structure is stabilized by intra- and intermolecular C– H···O hydrogen bonds (Table 1). In the crystal structure, the C–H···O intermolecular hydrogen bonds link the molecules into herringbone-like dimers which are stacked along the *b* axis (Fig. 2).

Experimental

Compound (1) was prepared from the cyclocondensation reaction that occurs between p,p'-dimethoxydibenzoylketene and oxalyl chloride (Hökelek *et al.*, 2002). Compound (2) was obtained from 1.0 g (2.96 mmol) (1) and 0.35 g (2.96 mmol) phenyl isocyanate in a 25 ml round-bottomed flask equipped with a calcium chloride tube. The mixture was heated at 393 K for 1 h. The cooled reaction mixture was triturated with dry diethyl ether and then recrystallized from *n*-butanol (yield 0.83 g, 65%, m.p. 480 K). IR (KBr, cm⁻¹): ν 1774 (C5–O4), 1690 (C4–O1), 1646 (C1–O2). ¹H NMR (CDCl₃): δ 7.95–6.81 (*m*, 13H, Ar–H), 3.84, 3.79 (*s*, 6H, CH3O); ¹³C NMR (CDCl₃): δ 190.80 (C5–O4), 166.60 (C4–O1), 165.04 (C1–O2), 162.36–113.47 (C=C, aromatic and aliphatic), 57.52, 57.44 (CH₃O). Analysis calculated for C₄₀H₃₅N₃O₅: C 69.93, H 4.42, N 3.26%; found: C 69.80, H 4.51, N 3.14%.

Crystal data

$C_{25}H_{19}NO_{6}$	$D_x = 1.446 \text{ Mg m}^{-3}$
$M_r = 429.41$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 1626
a = 10.950 (2) Å	reflections
b = 5.8163 (12) Å	$\theta = 4.5 - 50.4^{\circ}$
c = 30.968 (6) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\beta = 91.010 \ (4)^{\circ}$	T = 150 (2) K
V = 1972.0 (7) Å ³	Needle, colourless
Z = 4	$0.32\times0.12\times0.12$ mm
Data collection	
Bruker SMART1000 CCD area-	3456 independent reflections
detector diffractometer	2069 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.089$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.0^{\circ}$
(SADABS; Bruker, 1997)	$h = -13 \rightarrow 13$
$T_{\rm min} = 0.967, T_{\rm max} = 0.988$	$k = -6 \rightarrow 6$
13592 measured reflections	$l = -36 \rightarrow 36$

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.055$	$w = 1/[\sigma^2 (F_0^2) + (0.0743P)^2]$
$wR(F^2) = 0.154$	where $P = (F_0^2 + 2F_c^2)/3$
S = 0.98	$(\Delta/\sigma)_{\rm max} < 0.001$
3456 reflections	$\Delta \rho_{\rm max} = 0.24 \text{ e} \text{ \AA}^{-3}$
291 parameters	$\Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C13-H13···O3	0.95	2.33	2.665 (4)	100
$C14-H14\cdots O2^{i}$	0.95	2.45	3.384 (4)	168
C19−H19···O1 ⁱⁱ	0.95	2.47	3.231 (4)	137
$C24-H24A\cdots O2^{iii}$	0.98	2.52	3.225 (4)	128

Symmetry codes: (i) -x + 2, -y + 1, -z; (ii) x, y - 1, z; (iii) -x + 2, -y + 2, -z.

H atoms were positioned geometrically [C-H = 0.95 (CH)] and 0.98 Å (CH₃)] and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2$ (1.5 for methyl) times $U_{ca}(C)$.

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SHELXTL* (Bruker, 1997); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. & Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bayomi, S. M., Price, K. E. & Sowell, J. W. Sr (1985). J. Heterocycl. Chem. 22, 729–734.
- Bruker (1997). SMART, SAINT, SHELXTL and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Eger, K. & Frey, M. (1992). Arch. Pharm. 325, 551-556.
- Hökelek, T., Sarıpınar, E., Yıldırım, I., Akkurt, M. & Akçamur, Y. (2002). *Acta Cryst.* E**58**, 030–032.
- Mordarski, M. & Chylinska, J. B. (1971). Arch. Immunol. Ther. Exp. 19, 533–545.
- Mordarski, M. & Chylinska, B. (1972). Arch. Immunol. Ther. Exp. 20, 607-617.
- Mordarski, M., Chylinska, B. & Urbanski, T. (1970). Arch. Immunol. Ther. Exp. 18, 679–699.
- Player, M. R., Sowell, J. W., Sr., Williams, G. R. & Cowley, G. T. (1993). J. Heterocycl. Chem. 30, 125–128.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.