Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Harry Adams, ${ }^{\text {a }}{ }^{*}$ Samuel M. Hawxwell, ${ }^{\text {a }}$ Mustafa Saccmaci, ${ }^{\text {b }}$ Sevket Hakan Üngoren, ${ }^{\text {b }}$ Yunus Akçamur ${ }^{\text {b }}$ and Recep Sahingoz ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, England, and ${ }^{\mathbf{b}}$ Department of Chemistry, Yozgat Faculty of Arts and Sciences, Erciyes University, 66200 Yozgat, Turkey

Correspondence e-mail:
h.adams@sheffield.ac.uk

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.055$
$w R$ factor $=0.154$
Data-to-parameter ratio $=11.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

5-(4-Methoxybenzoyl)-6-(4-methoxyphenyl)-3-phenyl-3,4-dihydro-2H-1,3-oxazine-2,4-dione

In the title compound, $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{NO}_{6}$, the molecular structure is stabilized by intra- and intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The intermolecular hydrogen bonds link the molecules into a herringbone-like dimer.

Comment

Oxazine derivatives have been shown to be antimicrobial agents (Bayomi et al., 1985), fungicides (Player et al., 1993), and also to exhibit some cytotoxic or antitumour activity (Eger \& Frey, 1992; Mordarski et al., 1970; Mordarski \& Chylinska, 1971, 1972). In the light of this, we have synthesized and characterized the title compound, (2), and have determined its structure by X-ray analysis.

Received 12 October 2005 Accepted 25 October 2005 Online 31 October 2005

(2)

The molecular structure of (2) is illustrated in Fig. 1. The rings $(A, B, C$ and $D)$ are each essentially planar, with r.m.s. deviations of 0.031 (2), 0.019 (2), 0.017 (2) and 0.006 (2) \AA, respectively. The dihedral angles between the rings are $A / B=$ $64.31(9)^{\circ}, A / C=19.49(16)^{\circ}, A / D=82.31(8)^{\circ}, B / C=$ $62.22(9)^{\circ}, B / D=61.61(9)^{\circ}$ and $C / D=63.73(8)^{\circ}$. The bond lengths and angles are in agreement with reported literature values (Allen et al., 1987).

The molecular structure of (2), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms have been omitted.

The structure is stabilized by intra- and intermolecular C$\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1). In the crystal structure, the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds link the molecules into herringbone-like dimers which are stacked along the b axis (Fig. 2).

Experimental

Compound (1) was prepared from the cyclocondensation reaction that occurs between $\mathrm{p}, \mathrm{p}^{\prime}$-dimethoxydibenzoylketene and oxalyl chloride (Hökelek et al., 2002). Compound (2) was obtained from $1.0 \mathrm{~g}(2.96 \mathrm{mmol})$ (1) and $0.35 \mathrm{~g}(2.96 \mathrm{mmol})$ phenyl isocyanate in a 25 ml round-bottomed flask equipped with a calcium chloride tube. The mixture was heated at 393 K for 1 h . The cooled reaction mixture was triturated with dry diethyl ether and then recrystallized from n butanol (yield $0.83 \mathrm{~g}, 65 \%$, m.p. 480 K). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): $v 1774$ (C5O4), $1690(\mathrm{C} 4-\mathrm{O} 1), 1646(\mathrm{C} 1-\mathrm{O} 2) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.95-6.81$ $(m, 13 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 3.84,3.79(s, 6 \mathrm{H}, \mathrm{CH} 3 \mathrm{O}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ 190.80 (C5-O4), 166.60 (C4-O1), 165.04 (C1-O2), 162.36-113.47 $\left(\mathrm{C}=\mathrm{C}\right.$, aromatic and aliphatic), 57.52, $57.44\left(\mathrm{CH}_{3} \mathrm{O}\right)$. Analysis calculated for $\mathrm{C}_{40} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{5}$: C 69.93, H 4.42, N 3.26%; found: C 69.80 , H 4.51, N 3.14\%.

Crystal data

$\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{NO}_{6}$

$M_{r}=429.41$
Monoclinic, $P 2_{1} / c$
$a=10.950(2) \AA$ 。
$b=5.8163$ (12) \AA
$c=30.968$ (6) \AA
$\beta=91.010$ (4) ${ }^{\circ}$
$V=1972.0(7) \AA^{3}$
$Z=4$

Data collection

Bruker SMART1000 CCD areadetector diffractometer ω scans
Absorption correction: multi-scan (SADABS; Bruker, 1997)
$T_{\text {min }}=0.967, T_{\text {max }}=0.988$
13592 measured reflections

$$
\begin{aligned}
& D_{x}=1.446 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 1626 \\
& \quad \text { reflections } \\
& \theta=4.5-50.4^{\circ} \\
& \mu=0.10 \mathrm{~mm}^{-1} \\
& T=150(2) \mathrm{K} \\
& \text { Needle, colourless } \\
& 0.32 \times 0.12 \times 0.12 \mathrm{~mm}
\end{aligned}
$$

$$
\begin{aligned}
& 3456 \text { independent reflections } \\
& 2069 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.089 \\
& \theta_{\max }=25.0^{\circ} \\
& h=-13 \rightarrow 13 \\
& k=-6 \rightarrow 6 \\
& l=-36 \rightarrow 36
\end{aligned}
$$

Refinement

```
Refinement on F
R[F
wR(F}\mp@subsup{F}{}{2})=0.15
S=0.98
3456 reflections
2 9 1 \text { parameters}
```

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C13-H13 $\cdots \mathrm{O} 3$	0.95	2.33	$2.665(4)$	100
C14-H14 $^{\mathrm{i}}$	0.95	2.45	$3.384(4)$	168
C19-H19 $^{\mathrm{i}} \mathrm{O}^{\mathrm{ii}}$	0.95	2.47	$3.231(4)$	137
C24-H24A $^{\mathrm{C}} \mathrm{O}^{\mathrm{iii}}$	0.98	2.52	$3.225(4)$	128

[^0]

Figure 2
Packing diagram of (2); $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds are indicated by dashed lines.

H atoms were positioned geometrically $[\mathrm{C}-\mathrm{H}=0.95(\mathrm{CH})$ and $\left.0.98 \AA\left(\mathrm{CH}_{3}\right)\right]$ and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2\left(1.5\right.$ for methyl) times $U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SHELXTL (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L. \& Orpen, A. G. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bayomi, S. M., Price, K. E. \& Sowell, J. W. Sr (1985). J. Heterocycl. Chem. 22, 729-734.
Bruker (1997). SMART, SAINT, SHELXTL and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Eger, K. \& Frey, M. (1992). Arch. Pharm. 325, 551-556.
Hökelek, T., Sarıpınar, E., Yıldırım, • I., Akkurt, M. \& Akçamur, Y. (2002). Acta Cryst. E58, o30-o32.
Mordarski, M. \& Chylinska, J. B. (1971). Arch. Immunol. Ther. Exp. 19, 533545.

Mordarski, M. \& Chylinska, B. (1972). Arch. Immunol. Ther. Exp. 20, 607-617.
Mordarski, M., Chylinska, B. \& Urbanski, T. (1970). Arch. Immunol. Ther. Exp. 18, 679-699.
Player, M. R., Sowell, J. W., Sr., Williams, G. R. \& Cowley, G. T. (1993). J. Heterocycl. Chem. 30, 125-128.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

[^0]: Symmetry codes: (i) $-x+2,-y+1,-z$; (ii) $x, y-1, z$; (iii) $-x+2,-y+2,-z$.

